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Abstract

Confidentiality of disk-resident data is critical for end-
to-end security of storage systems. While there are several
widely used mechanisms for ensuring confidentiality of data
in transit, techniques for providing confidentiality when
data is stored in a disk subsystem are relatively new. As op-
posed to prior file system based approaches to this problem,
this paper proposes an application-level solution, which al-
lows encryption of select data blocks. We make three major
contributions: 1) quantifying the tradeoffs between confi-
dentiality and performance; 2) evaluating a reuse distance
oriented approach for selective encryption of disk-resident
data; and 3) proposing a profile-guided approach that ap-
proximates the behavior of the reuse distance oriented ap-
proach. The experiments with five applications that manip-
ulate disk-resident data sets clearly show that our approach
enables us to study the confidentiality/performance trade-
offs. Using our approach it is possible to reduce the perfor-
mance degradation due to encryption/decryption overheads
on an average by 46.5%, when DES is used as the encryp-
tion mechanism, and the same by 30.63%, when AES is used
as the encryption mechanism.

1 Introduction and Motivation

Many computing systems today generate, manipulate,
transmit and store enormous amounts of data. End-to-end
security refers to the process of guaranteeing confidential-
ity, integrity and availability of data during these activities.
While several protocols such as IPSec [14] and SSL [7]
exist and are widely used to secure data while in transit,
efforts for securing data in rest (e.g., when stored in a disk
subsystem) are relatively new. Lack of security provisions
for disk-resident data can invite intrusions and other types
of security related attacks, leading to significant damage to

computing systems.

In the context of storage systems, confidentiality refers to
ensuring that disk-resident data are accessible only to those
authorized to have access, and is one of the cornerstones of
storage security [16]. One way of ensuring confidentiality
is to employ encryption. The idea is to keep data in the disk
subsystem in an encrypted form and decrypt only when it
needs to be processed. Several file systems, which can col-
lectively be called cryptographic file systems [2, 4, 8], pro-
vide support for encrypting disk-resident data and related
provisions such as key management and key sharing. One
of the problems with the file system based approaches to
confidentiality is that the file system policies are generally
heavy-handed with too much overhead and are not flexible
enough so that they can be tuned based on the needs of in-
dividual applications.

While encrypting disk-resident data can help us ensure
its confidentiality, it can also bring significant performance
overheads at runtime, because encrypted data have to be de-
crypted to be operated on. While we want to keep data in
the storage system in an encrypted form as much as pos-
sible, we may not want to pay a very heavy performance
penalty for this. Prior research already pointed out this
tradeoff between security and performance in the context of
storage systems. However, it is also important to quantify
this tradeoff and understand how it can be exploited using
access characteristics of data.

Focusing on scientific applications, this paper proposes
and evaluates an application-level approach for ensuring
confidentiality of disk-resident data. While confidentiality
of disk-resident data is important in many application do-
mains, our focus here is on scientific computing domain,
where multiple applications share the same disk subsys-
tem, but owners of an application may not want others to
access the contents of some of their data. Specifically,
this paper makes the following contributions: Firstly, we
present experimental data showing the tradeoffs between
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confidentiality and performance. In particular, we report
results from our experiments that compare two extreme
approaches: never encrypt/decrypt (NED) and always en-
crypt/decrypt (AED). The results from these experiments
motivate for selective encryption of disk-resident data. Sec-
ondly, we evaluate the potential for an approach that strikes
a balance between the conflicting confidentiality and per-
formance requirements. The goal of this approach is to ex-
plore the options between NED and AED. The proposed
approach is based on the concept of reuse distance and ap-
plies encryption/decryption to a data block only if the reuse
distance for that block is less than a certain value. Lastly,
we describe how a profile-guided approach can be used for
approximating the potential of the reuse based approach
by deciding for each static I/O call in the program code
whether it should encrypt (in case of writes) or decrypt (in
case of reads) data, or use plain access (without any encryp-
tion/decryption). Our experiments with five applications
that manipulate disk-resident data clearly show that our ap-
proach enables us to study the confidentiality/performance
tradeoff.

The rest of this paper is organized as follows. Section
2 discusses related work on storage security. Section 3 de-
scribes our experimental setup and metrics of interest. Sec-
tion 4 presents a quantitative analysis of the confidentiality-
performance tradeoffs using two extreme schemes (NED
and AED). Section 5 explains our reuse-oriented approach
for analyzing these tradeoffs. Section 6 explains a profile-
guided approach and discusses how it can be used for favor-
ing confidentiality over performance or vice versa. Section
7 concludes the paper by summarizing our major observa-
tions, and giving a brief outline of future work.

2 Related Work

Many systems have been proposed to address the secu-
rity related issues in modern file systems. To ensure con-
fidentiality in the file system, most of these systems in-
clude several features for controlling access to files unless
specifically authorized. Since these mechanisms do not pro-
tect data stored on disk, they offer weak security. Other
systems, such as NASD (Network Attached Secure Disks)
[10], iSCSI with IPSEC [14], NFS (Network File System)
with secure RPC [23], AFS (Andrew File System) [11], and
SFS (Secure File System) [17], provide stronger security
by encrypting data on the wire as well as using consider-
ably stronger authentication mechanisms. These encrypt-
on-wire type of file systems protect the data from adver-
saries during communication. Therefore, all communica-
tion is secure, but the data is stored on disks in plain text.
Since the data must be encrypted before sending it through
the network, there is also an inherent encryption overhead
associated with these approaches. There are also additional

Table 1. Characteristics of Applications.

Name Source # I/O Op I/O Size(MB)
SWIM SPEC2000 [15] 622900 85.3

MGRID SPEC2000 [15] 600288 74
LU LINPACK [24] 1431680 175

MxM NAS Kernels [3] 787456 384.5
TSF Perfect Club [1] 519176 126.75

overheads on the disk because the data must be decrypted
before storing it on the disk.

While the file systems explained so far have focused
on adding encryption on the wire, i.e., access control and
protecting data in transit, several recent studies considered
file systems that are designed to protect data stored on the
disk. The representative efforts include CFS (Cryptographic
File System) [2], Cryptfs [27], TCFS (Transparent Cryp-
tographic File System) [4], EFS (Encrypted File System)
[6], Cepheus [8], SFS-RO (SFS-Read Only) [9], and Plutus
[13]. These file systems provide an end-to-end data con-
fidentiality; that is, they encrypt data before it is sent over
the network and data is stored in encrypted format in files.
Only the users of that data (not the servers) have a privilege
to decrypt it. Since all data is stored in an encrypted form on
the disk, such systems ensure that the compromised servers
have no control over the stored data. The main drawback of
this encrypt-on-disk approach is that they may incur signif-
icant performance degradation on the client machines be-
cause all encryption/decryption burden is imposed on them.
Strong security with poor usability and/or performance can
make a system less attractive. Secure storage systems and
cryptographic softwares are used less than one would ex-
pect in practice, mainly due to the overheads involved in
encryption/decryption [25],[12].

Our work is different from these prior efforts on secur-
ing disk resident data because we focus on application level
encryption to provide confidentiality, based on application
needs. This allows our approach to strike a balance between
two extreme options: poor security/good performance and
poor performance/good security.

3 Experimental Setup and Metrics of Inter-
est

We present experimental results obtained on a SUN
Blade1000 machine running Solaris 10. The data arrays
manipulated by our applications are stored in a remote file
system accessible through NFS (Network File System). We
used eight disks as a RAID for configuring the remote file
system. We compiled our applications for our client system
using gcc 3.4.3 under Solaris. The run-time layer of the en-
cryption/decryption function is written in a separate file and
built into a library, which is linked to an executable during
compilation step.



As mentioned earlier, we focus on scientific applications
that process disk-resident data sets. The default file cache
used in our experiments can hold one data block at a time
(we also report results with different file cache sizes). Our
evaluation workload consists of five scientific applications:
swim, mgrid, lu, mxm and tsf. Table 1 presents important
characteristics of these applications. These applications are
modified from their original forms such that they operate on
disk-resident data. Apart from this change, however, the ap-
plications maintain the same behavior as their original ver-
sions. Therefore, one may think of these applications as
I/O-intensive versions of the original codes. It needs to be
mentioned however that we carefully hand-tuned the result-
ing codes so that they do not perform any unnecessary I/O
(similar to the way an I/O-intensive application would be
written by an experienced programmer). The files are writ-
ten to read from the disk subsystem at a block granularity.
The block sizes used in our experiments range from 512
bytes to 1024 bytes, depending on the application.

In our work, we focus on the following important metrics
which help us study the tradeoff between confidentiality and
performance.

• I/O Time (IOT): This is the I/O latency when secu-
rity (encryption/decryption) overheads brought by the
scheme being evaluated are also included. Specifically,
it includes the time spent in I/O plus the time spent
in performing encryption/decryption and related activ-
ities and, in our presentation its value is normalized
with respect to a base version. The I/O time contribu-
tion to overall execution latency in these benchmarks is
between 64.2% and 96.6%. The base version does not
employ any security features while reading and writing
disk blocks. That is, it reads and writes the data blocks
in plain form.1

• Vulnerability Factor (VF): Percentage of data stored in
plain text on disk subsystem at any given point in ex-
ecution. In this work, we consider two variants of this
metric. The average vulnerability factor (AVF) is the
VF value, averaged over all execution points (all cy-
cles). On the other hand, the maximum vulnerability
factor (MVF) is the maximum value of the VF wit-
nessed during the entire execution of the application.

Clearly, in the ideal case, we want to reduce the values
of both IOT and VF as much as possible.

1It needs to be emphasized that this base version is different from NED
to be discussed shortly, as it does not perform any encryption/decryption
during execution, whereas NED performs encryption/decryption at the first
read and last write operations.

4 Quantitative Analysis of the
Confidentiality-Performance Tradeoff

Applications using file-system based end-to-end secu-
rity mechanisms in storage systems consistently incur the
performance overhead of decryption/encryption on every
I/O operation that go to the disk subsystem. In particu-
lar, frequently accessed application data is normally subject
to multiple cycles of decryption and encryption. On one
hand, we want to improve confidentiality by keeping data
on the disk subsystem in encrypted form as much as pos-
sible; i.e., we want to reduce the value of the VF metric.
On the other hand, we also want to minimize the overheads
associated with encryption/decryption; i.e., we want to re-
duce the value of IOT metric. In this section, we evaluate
the following two extreme schemes:

• AED : Always Encrypt/Decrypt refers to the default
scheme where the data is encrypted and decrypted ev-
ery time it is used. As depicted in Figure 1(b), every
read from the disk requires data to be decrypted and
similarly every write to the disk requires data to be en-
crypted. Although this scheme ensures complete end-
to-end confidentiality of data (the best VF value possi-
ble), there is significant overhead involved in encrypt-
ing and decrypting data every time it is written to and
read from the disk subsystem. As a result, this scheme
incurs the largest possible performance overhead.

• NED: Never Encrypt/Decrypt refers to a scheme where
the data is never encrypted or decrypted between its
first read and last write. However, as depicted in Fig-
ure 1(a), this scheme requires the first read to a particu-
lar data to be a read with decryption as data in the disk
is assumed to be initially encrypted and the last write
requires encryption as data in the disk needs to be se-
cured. As far as performance is concerned, this scheme
scores far better than AED; however, it exposes data
for the maximum duration of time.

We now present experimental results quantifying the
tradeoffs between confidentiality and performance when
these two extreme approaches are used. Specifically, we
quantify our parameters of interest, IOT and VF, under these
approaches. For each benchmark in our experimental suite,
we implemented and performed experiments with two dif-
ferent encryption algorithms: Triple-DES (denoted as DES
in this paper) [20] and AES [22]. All the results presented in
Figure 2 are normalized against the base version (explained
in Section 3).

The graph in Figure 2(a) gives the value of the IOT
metric for each application under the two schemes dis-
cussed above. The absolute IOT values measured for the
base version are 2873.24, 2678.45, 5676.32, 5940.22 and
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Figure 1. Different approaches to confidentiality of the disk-resident data. (a) NED, (b) AED and (c)
Our data reuse-oriented approach.

(a)

(b)

Figure 2. (a) Normalized Time (IOT) with dif-
ferent schemes. (b) AVF and MVF of our ap-
plications with NED scheme.

3453.79 msec for the applications swim, mgrid, lu, mxm
and tsf, respectively. We can draw several conclusions from
these results. First, we see that enforcing security on every
read/write operation of data blocks with DES algorithm can
increase IOT over the base version by 5.4 times when aver-
aged across all five applications. The security overheads
when we use the AES algorithm, however, increases the
IOT by 2 times on average, because of the fact that AES is a
much faster encryption algorithm than the DES algorithm.
On the other hand, with the NED scheme, the security over-
heads increase IOT only by 2.3 times and 1.2 times using
DES and AES, respectively, when averaged across our ap-
plications. We also observe that the NED-DES scheme de-

creases IOT over the AED-DES scheme by 84% and 74% in
case of tsf and lu, respectively. Such a large improvement in
performance is possible because the tsf and lu applications
manipulate the same data in several loop nests repeatedly
(high data reuse). However, in applications such as swim,
mgrid and mxm, the improvement in performance of NED-
DES scheme over the AED-DES scheme is by 31%, 26%
and 56%, respectively. This is relatively lesser than the im-
provements observed with tsf and lu, because of the reduced
fraction of data repeatedly used by these applications (low
data reuse).

It should be noted that the performance gains presented
for NED over AED are achieved at the expense of certain
degree of confidentiality of intermediate data stored on the
disk subsystem. That is, the NED scheme exposes data for
the longest duration so as to reap maximum benefits on per-
formance. In our next experiment, we gauge the percentage
of data stored in plain form temporarily during the execu-
tion using our metrics for AVF and MVF.

The graph in Figure 2(b) plots the values of the AVF and
MVF metrics for each application under the NED scheme.
Notice that the results are the same irrespective of the
encryption algorithm (DES or AES) used. Under AED
scheme, data is always stored encrypted; so, we present re-
sults only for the NED scheme. We see from these results
that AVF and MVF averages about 30% and 40%, respec-
tively, across all five applications. Note that this is the result
obtained after exposing data for the maximum duration. In
case of MxM for example, only the result matrix (one out
of three) which is written is exposed, leading to an AVF of
33.33%, while in lu the entire array is modified in place (by
reads and writes while array is on disk) and hence AVF and
MVF are about 72% and 100%, respectively, whereas for
other cases with mixed behavior like swim, tsf and mgrid,
AVF and MVF are about 15% and 20%, respectively.



Figure 3. Data reuse potential in our appli-
cations. Different applications have different
amounts of data reuses and also their reuse
characteristics change during execution.

Now, based on the results presented in Figures 2(a) and
2(b), one can clearly see the tradeoff between confidential-
ity and performance. In the rest of this paper, we explore
possibilities between these two extreme schemes. Our main
tool for this exploration is data reuse, as explained in the
next section.

5 Data Reuse-Oriented Approach to Confi-
dentiality

We observe that a significant fraction of data read/written
by applications have reuse. In particular, scientific applica-
tions have distinctive and variable patterns of data reuse.
This observation is crucial for reducing the performance
overheads of encryption/decryption. By effectively utiliz-
ing the data reuse behavior of applications it may be pos-
sible to reduce the encryption/decryption overhead. More
specifically, if a data block has a high degree of reuse, it can
be stored in plain form to reduce access costs. If, on the
other hand, it does not have a high degree of reuse, it can be
stored in encrypted form.

In order to study the data reuse available in our scientific
applications, we measured a program characteristic, which
we call the reuse potential (ρ), which is defined as the ra-
tio between data previously read/written by the application
which has a reuse and total data used by the application.
Figure 3 plots the variation of ρ against normalized execu-
tion time. Note that, while this is certainly not the only pa-
rameter for quantifying data reuse, it is a suitable parameter
for our purposes. We can see from Figure 3 that these ap-
plications have significantly different reuse potentials and,
also data reuse changes, in a given application, during the
course of execution. A high ρ at any given point, indicates
that a large amount of data that has been previously used
by the program would be reused in future. A high value
of ρ is possible under two circumstances: 1) Data is used
early in the program and reused late and 2) Same data is
frequently reused over and over again during the execution

of the program. To distinguish between these two cases,
we also define another parameter, δ, which is the reuse dis-
tance; i.e., the number of intervening I/O requests between
two requests to the same data block (same offset and file).
Clearly, δ also varies during the program execution. The
data access pattern of applications gives rise to various val-
ues of reuse distance (δ) during the course of execution of
the program. To characterize the variation of reuse distances
in our applications, we experimentally determined the vari-
ation in the number of reuses across fixed intervals of reuse
distance (δ). This distribution is depicted in Figure 4. As
can be seen from this figure, lu and swim exhibit a more uni-
form distribution of reuse distances, whereas mgrid, tsf and
mxm have a highly concentrated distribution in few ranges
of δ.

Clearly, a higher δ value indicates higher vulnerability of
data if left insecure (in plain form). Therefore, applications
can choose to selectively secure such data. On the other
hand, the data that has a high value of ρ but has a lower δ
can be temporarily written/read in the plain form to reduce
performance overheads.

Recall that, in NED, data is exposed for the entire du-
ration in a manner which is oblivious of the magnitude of
reuse distance. This results in high VF values, as shown in
Figure 2(b). In the rest of this section, we introduce a data
reuse-oriented approach and quantify its behavior in terms
of IOT and VF. While this approach is not directly imple-
mentable (as it requires knowledge on future I/O patterns),
it gives us potential of a reuse-based approach to confiden-
tiality of disk-resident data. Later (in Section 6), we present
an implementable approach that approximates the behav-
ior of this reuse-oriented approach. The reuse oriented ap-
proach, shown pictorially in Figure 1(c), uses a threshold
value of reuse distance (δthreshold). If the reuse distance δ
for the data being written is greater than δthreshold, data is
encrypted and written in order to minimize the VF. Other-
wise data is written in plain form and any subsequent reads
to the same data are performed in the plain form.

To arrive at a δthreshold value we first start by defining
two ratios to account for both IOT and V F . The first is
the Performance Ratio and the second is called the Security
Ratio. For any value of δ, called δk, the performance ratio
is defined as the ratio of the IOT value of the most secure
case (value with lowest value of δ) to the IOT with δk as
the reuse distance. The performance ratio in effect measures
the effect of increasing the increasing performance afforded
by increasing the reuse distance. The performance ratio is a
value that is greater than or equal to 1.

The security ratio is defined for a reuse distance, δk,
as the ratio of the portion secure (unexposed) data when
a reuse distance of δk is used to the portion of secure data
in the most insecure case (with the highest value of δ). The
security ratio measures the benefit to the security of data



(a) lu (b) mgrid (c) mxm (d) swim (d) tsf

Figure 4. Distribution of reuses across intervals of δ. Values on x-axis represent ranges of reuse
distance (δ) for various applications, and the y-axis captures the percentage of reuse with particular
distances.

(a) (b) (c)

Figure 5. Look-ahead window for the reuse-oriented encryption/decryption scheme. write encrypt and
read decrypt correspond to encrypted write and decrypted read, respectively. plain write and plain read
are write and read operations, respectively, without any encryption/decryption. (a) Sliding window of
size δthreshold. (b) Offset of evicted write instruction compared with offsets of other read instructions
in the window. (c) Instructions with matching offsets (if any) are replaced by plain read, and the
evicted instruction is itself made a plain write.

stored in memory when a lower value of reuse distance is
used compared to the most insecure case. It is a value that
is at least 1.

Using the performance ratio and the security ratio, a suit-
able combined metric value can be determined by dividing
performance ratio by security ratio for a reuse distance of
δk. This value represents the unit gain in performance ratio
for every unit loss in security ratio. If the combined met-
ric is less than 1, it means that the performance gained in
exploring reuse at δk is not proportionate to the increased
exposure of data. A combined metric of exactly 1 means
that the reuse distance at which this occurs allows the appli-
cation to gain in terms of performance what is lost in term
of security. The ideal case is when the combined metric is
> 1, as this indicates a performance gain that is dispropor-
tionately larger than the security loss. A suitable δthreshold

value is determined as the value of δk for which combined
metric is > 1.

To evaluate the values of our metrics with this reuse
oriented approach, we implemented it as a library which
we call reuse-window library. The reuse-window library
maintains a sliding look-ahead window of size δthreshold,

as shown in Figure 5(a). All I/O calls in our applications
were instrumented such that they call the reuse-window li-
brary. The library in turn evicts the first I/O call in the win-
dow and appends the latest I/O call to the reuse-window.
When a write call is being evicted from the reuse-window,
its offset is compared with the offsets of the read instruc-
tions present within the window, as pictorially depicted in
Figure 5(b). If a match is found, the particular offset is
marked to be in the plain form (this means that the reuse
distance for that disk block is short). Any subsequent read
(before a write encrypt) to the same offset is interpreted
as a plain read. Any other read/write is interpreted as a
read decrypt/write encrypt as shown in Figure 5(c).

Clearly, δthreshold is a critical parameter in the reuse-
oriented approach. As explained before, every program ex-
hibits a characteristic pattern of data reuse with a lot of vari-
ation in the reuse distance, δ. Therefore, in the remainder
of this section, we evaluate the variation of our metrics IOT
and VF for different values of δthreshold using this reuse-
oriented approach.

We present results for a range of values for δthreshold for
every application in our experimental suite. It is important



(a) IOT for mgrid (DES) (b) IOT for mgrid (AES) (c) VF for mgrid

(d) IOT for mxm (DES) (e) IOT for mxm (AES) (f) VF for mxm

(g) IOT for lu (DES) (h) IOT for lu (AES) (i) VF for lu

(j) IOT for tsf (DES) (k) IOT for tsf (AES) (l) VF for tsf

(m) IOT for swim (DES) (n) IOT for swim (AES) (o) VF for swim

Figure 6. IOT and VF variations with different δthreshold values.



to note that whenever δthreshold is increased, say from δ1 to
δ2, all reuses that were exploited for δ1 are exploited for δ2

as well. With a threshold of δ2 (δ2 > δ1), we can exploit
some additional reuses that fall in the distance between δ1

and δ2. Therefore, IOT either remains the same (in case no
additional reuse is detected) or decreases with increase in
δthreshold. Figures 6(a) through 6(o) show the variation of
IOT and VF for our applications with the different values
of δthreshold. On an average, we observe an improvement
of 21.8%, 45.1%, 24.8%, 84.4% and 56.5% in performance
(IOT metric) over the AED scheme for swim, lu, mgrid, tsf
and mxm, respectively, with DES as the encryption algo-
rithm. Also, on an average, we observe an improvement
of 19.1%, 26.1%, 11.0%, 57.9% and 38.9% in performance
over the AED scheme for swim, lu, mgrid, tsf and mxm,
respectively, with AES as the encryption algorithm. Simi-
larly, with an increase in δthreshold, vulnerability factor VF
increases due to increased duration of exposure of data. On
an average, we observe an increase of 30.13% in AVF and
33.80% in MVF over that in AED across the applications.

For certain programs like lu and swim, the variation
of IOT and VF is continuous. The continuous variation
is because of the uniform distribution of the data reuses
across the different reuse distances. For other programs,
like mxm, tsf and mgrid, most of the reuses occur at fixed
reuse distances (see Figure 4), and consequently, increas-
ing δthreshold beyond a certain value does not bring any
additional benefits. For instance, a δthreshold of 2000 im-
proves the performance of mgrid, using DES as the encryp-
tion mechanism, by 23.6% (over AED), this causes a MVF
increase of only 1.9%. We could explain this behavior by
observing that most reuses in case of mgrid, happen at reuse
distances lesser than 2000, as shown in Figure 4(b). This re-
sult clearly shows that, by sacrificing only a little confiden-
tiality, our reuse–oriented approach can reduce the perfor-
mance overhead brought by AED dramatically. Beyond this
value (2000), increasing δthreshold to even 20000, improves
the performance by only 2.72%, for an increase of 24.36%
in the vulnerability (MVF). However, in lu, due to the uni-
form distribution of reuses, increasing δthreshold from 250
to 1000 continuously leads to gain in performance. Again,
since lu has few reuses at δ greater than 1000 (as seen from
Figure 4(a)), the improvement in performance by increas-
ing δthreshold beyond this value is negligible. Therefore, it
is important to select a reasonable range of δthreshold for an
application based on its reuse characteristics, specifically,
the distribution of reuses with different reuse distances.

Our approach is also a very promising option when com-
pared to NED. Again, focusing on mgrid, we see that work-
ing with δthreshold of 2000 reduces the AVF and MVF
values by 99.4% and 92.6%, respectively, over the NED
scheme, while generating a similar IOT value as the lat-
ter. Based on this discussion, we can conclude that our data

reuse-oriented approach can be used for either 1) Obtaining
a much better performance than AED with little confiden-
tiality sacrifice, or 2) Obtaining a much better confidential-
ity than NED with similar performance.

So far in our experiments, for each application, we used
a file cache that can hold a single data block at a time. We
now report results with different file cache sizes. To eval-
uate the effectiveness of our approach in presence of larger
file caches, we performed additional experiments by vary-
ing the default size of the file cache. We report results of
the variation of our metrics, IOT and VF, with different
values of δthreshold. It is important to emphasize that our
reuse based approach supplements the performance bene-
fits achieved using a larger file cache.

Figures 7(a) and 7(b) depict the variation of AVF with
respect to the file cache size in applications tsf and lu, re-
spectively. As the file cache size (FCS) increases, there is an
increase in AVF with increase in δthreshold. This is because
the file cache buffers the data, possibly residing on disk in
plain form, thereby increasing the duration for which the
data is kept in plain form on disk.

Figures 7(c) and 7(d) present the variation of IOT with
respect to file cache size (FCS) in our applications tsf and
lu, respectively. We observe that, with an increase in the
file cache size (FCS), performance continuously improves
(IOT decreases) as δthreshold is increased. The file cache
temporarily stores the recently-accessed disk data. This re-
duces the total number of disk accesses made by the ap-
plication, thereby reducing IOT. Additionally, an increase
in δthreshold reduces the overhead of encryption/decryption
on some file cache misses, contributing to further improve-
ment in performance.

The results presented in this section clearly show that our
data reuse-oriented approach is useful in analyzing the op-
tions between the two extreme schemes, AED and NED. In
particular, by making experiments with different δthreshold

values, a designer can determine the most suitable value for
a given application under specified performance and confi-
dentiality requirements.

6 Profile-Guided Approach to
Confidentiality

While the reuse oriented approach presented in Section
5 helps us study the confidentiality-performance tradeoff, it
is not a directly implementable scheme, as it requires fu-
ture knowledge of data access patterns. In order to approx-
imate the behavior of this reuse based approach, we pro-
pose in this section a profile-based approach, which is im-
plementable.

Even I/O-intensive applications typically have a small
number of static I/O calls in their program codes. Each
of these static I/O calls is executed multiple times during



(a) AVF for tsf (b) AVF for lu

(c) IOT for tsf (d) IOT for lu

Figure 7. Sensitivity of IOT and VF to the file cache size (FCS).

the execution of the program. For instance, a static I/O
call enclosed in a loop results in many dynamic instances
of the call, possibly with different parameters each time.
Based on such variable parameters and using knowledge of
data access patterns, our reuse-oriented approach explained
in Section 5 decides, for each dynamic instance of an I/O
call, whether it is to be a plain access (without any encryp-
tion/decryption) or an encrypted access (in case of writes)
and decrypted access (in case of reads). Since the reuse-
oriented approach proposed above works with the dynamic
I/O instructions, it has flexibility in marking different dy-
namic instances of the same static instruction differently
(i.e., plain versus encrypted/decrypted). However, any ap-
proach that works with static I/O calls have limited flexibil-
ity compared to the reuse-based scheme (because we have
fewer static calls than dynamic instances, as illustrated in
Figure 8). In our profile–guided approach, profiler inserts
hints in every static I/O call. Note that the hint attached to
a static I/O call indicates whether that call works with plain
or encrypted data, and effects the behavior of all dynamic
instances of that static call. Therefore, the hint attached to
a static call should be determined very carefully. Based on
this observation, we can divide the static calls in a given

program code into three groups:

• Group I: The static I/O call (read/write) can always be
interpreted as read decrypt/write encrypt. This holds
true when there is no frequent reuse on the data ma-
nipulated by these I/O calls; i.e., when all dynamic in-
stances (in the reuse-oriented scheme) are marked as
encrypted/decrypted write/reads. Examples of this are
the static I/O calls numbered 1 and 4 in Figure 8.

• Group II: The static I/O call (read/write) can al-
ways be interpreted as plain read/plain write. This
holds true when the data manipulated by these I/O
calls are repeatedly reused within a short period of
time; i.e., when all corresponding dynamic instances
(in the reuse-oriented scheme) are marked as plain
reads/writes. An example of this is the static I/O call
numbered 3 in Figure 8.

• Group III: Decision varies dynamically for the same
static I/O call in the program. This group captures the
occurrences that do not fall into the first two groups.
Examples of this are the static I/O calls numbered 2
and 5 in Figure 8.



Table 2. Breakdown of the occurrences of
Group I, II, and III for each application in
percentage in Performance Oriented (PO)
scheme.

PO δthreshold Group I Group II Group III
swim 2450 12.72% 67.23% 20.05%
mgrid 2000 2.58% 52.26% 45.16%

tsf 4000 0.78% 0.0% 99.22%
mxm 1000 0.0% 0.59% 99.41%

lu 125 0.02% 0.59% 99.39%

Table 3. Breakdown of the occurrences
of Group I, II, and III for each application
in percentage in Security Oriented (SO)
scheme.

SO δthreshold Group I Group II Group III
swim 2000 0.0% 10.91% 89.09%
mgrid 2000 2.58% 52.26% 45.16%

tsf 500 0.0% 100% 0.0%
mxm 500 0.0% 100% 0.0%

lu 50 0.03% 0.6% 99.37%

(a) Before I/O call splitting. (b) After I/O call splitting.

Figure 9. I/O call splitting for handling references in Group III.

Figure 8. Mapping between static I/O calls
and dynamic instances.

In the first and second cases, a compiler can mark the
static I/O call as the particular type indicated by the dy-
namic instances. We refer to a static I/O call with this type
of uniform behavior as deterministic. However, in the third
case when a static I/O (read/write) call is dynamically made
a read decrypt (write encrypt) some times and plain read
(plain write) the rest of the times, the compiler cannot mark
it to be of any particular type easily. In such cases, the com-

piler may want to modify the code such that it approximates
to the dynamic behavior as closely as possible. More specif-
ically, using code transformations, we may want to create
two (static) I/O calls from the same original I/O call such
that these new calls have more deterministic behavior (see
Figure 9 for an example). This transformation is called I/O
call splitting and is used in both the profile–guided schemes
explained below. But, even after this transformation, for a
given static call, we may still have dynamic instances with
different behavior. However, one may also play with the
δthreshold value to make most of the I/O calls in Group III
more deterministic. Consequently, two schemes are feasible
with the profile– guided approach described above.

• Performance Oriented: In the performance oriented
approach (PO), the compiler profiles the code with a
δthreshold, such that performance is favored over con-
fidentiality in the tradeoff between performance and
confidentiality.

• Security Oriented: In the security oriented approach
(SO), compiler profiles the code with a δ′threshold, such
that confidentiality is favored over performance in the
tradeoff between performance and confidentiality.

Note that the main difference between PO and SO is in how
the references in Group III are marked. This is achieved
using different values of δthreshold and applying I/O call



Figure 10. IOT(DES) variation with
different approaches.

Figure 11. IOT(AES) variation with
different approaches.

Figure 12. AVF variation with differ-
ent approaches. Note that the AVF
values for ROS and SO are very close
to zero for all benchmarks.

Figure 13. MVF variation with differ-
ent approaches. Note that the MVF
values for ROS and SO are very close
to zero for swim, tsf and mxm.

splitting as explained above. From our experiments we find
that, in most of the applications, a large portion of the static
I/O calls belong to Group III. Tables 2 and 3 give a break-
down of the occurrences of Groups I, II, and III for each
application in the Performance Oriented (PO) and the Secu-
rity Oriented (SO) schemes. In such cases where the mixed
behavior of static I/O calls needs to be analyzed, we carry
out intra-loop reuse analysis [18, 21, 26] and apply I/O call
splitting whenever possible.

We present a comparison of our results by plotting the
variation of our metrics (IOT (DES), IOT (AES), AVF and
MVF) with different applications using various approaches
described so far. Figures 10 through 13 compare the vari-
ation of our metrics with six different approaches (AED,
NED, ROP, ROS, PO and SO). AED and NED are the two
extreme cases, explained in Section 4. PO and SO are Per-
formance Oriented and Security Oriented approaches using
profiling, for different values of δthreshold given in the sec-
ond columns of Table 2 and 3, respectively. ROP and ROS
are the reuse-oriented approaches (discussed in Section 5)
for values of δthreshold same as that of PO and SO, respec-

tively. Our most important observation from these results is
that the profile-guided approach follows the reuse-oriented
approach very closely in all benchmarks. In fact, the two ap-
proximations give almost the same result for four of our five
applications. In swim, our intra-loop reuse analysis was not
sufficient to generate deterministic static calls from a given
original static call, using the approach in Figure 9. Con-
sequently, there is a slight difference between the reuse-
oriented approach and the profile-guided approach. One
way of having better approximation in swim is to employ
inter-loop reuse analysis [5, 19], which is in our future re-
search agenda.

7 Conclusion and Future Work

Securing disk-resident data is very important in the con-
text of storage systems. Applications using file system-
based end-to-end security mechanisms consistently incur
performance degradation because of the overheads involved
in encryption/decryption. This paper describes an appli-



cation level solution to secure disk-resident data, based
on data reuse concept, that helps us effectively utilize the
data access/reuse patterns of the application. We quan-
tify the tradeoffs between performance and confidential-
ity and experimentally analyze the effect of our proposed
reuse-oriented approach on performance and confidential-
ity of data with various scientific applications that manip-
ulate disk-resident data sets. From our experimental eval-
uation, we can conclude that using our approach it is pos-
sible to reduce the performance degradation due to encryp-
tion/decryption overheads by 46.5%, when DES is used as
the encryption mechanism, and the same by 30.63%, when
AES is used as the encryption mechanism. In our future
work, we plan to devise a suitable (combined) metric in or-
der to find an optimum value for δthreshold, under given per-
formance and confidentiality requirements. Work is also un-
derway in employing inter-loop reuse analysis for bridging
the gap between the reuse-oriented scheme and the profile–
guided schemes. Finally, we are also planning to explore
suitable (encryption/decryption) key management and key
sharing schemes that operate with our approaches.
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